Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Writing and maintaining UI tests for mobile apps is a time-consuming and tedious task. While decades of research have produced auto- mated approaches for UI test generation, these approaches typically focus on testing for crashes or maximizing code coverage. By contrast, recent research has shown that developers prefer usage-based tests, which center around specific uses of app features, to help support activities such as regression testing. Very few existing techniques support the generation of such tests, as doing so requires automating the difficult task of understanding the semantics of UI screens and user inputs. In this paper, we introduce Avgust, which automates key steps of generating usage-based tests. Avgust uses neural models for image understanding to process video recordings of app uses to synthesize an app-agnostic state-machine encoding of those uses. Then, Avgust uses this encoding to synthesize test cases for a new target app. We evaluate Avgust on 374 videos of common uses of 18 popular apps and show that 69% of the tests Avgust generates successfully execute the desired usage, and that Avgust’s classifiers outperform the state of the art.more » « less
- 
            null (Ed.)Noise in software patches impacts their understanding, analysis, and use for tasks such as change prediction. Although several approaches have been developed to identify noise in patches, this issue has persisted. An analysis of a dataset of security patches for the Tomcat web server, which we further expanded with security patches from five additional systems, uncovered several kinds of previously unreported noise which we call nonessential casualty changes. These are changes that themselves do not alter the logic of the program but are necessitated by other changes made in the patch. In this paper, we provide a comprehensive taxonomy of casualty changes. We then develop CasCADe, an automated technique for automatically identifying casualty changes. We evaluate CasCADe with several publicly available datasets of patches and tools that focus on them. Our results show that CasCADe is highly accurate, that the kinds of noise it identifies occur relatively commonly in patches, and that removing this noise improves upon the evaluation results of a previously published change-based approach.more » « less
- 
            Reducing network latency in mobile applications is an effective way of improving the mobile user experience and has tangible economic benefits. This paper presents PALOMA, a novel client-centric technique for reducing the network latency by prefetching HTTP requests in Android apps. Our work leverages string analysis and callback control-flow analysis to automatically instrument apps using PALOMA’s rigorous formulation of scenarios that address “what” and “when” to prefetch. PALOMA has been shown to incur significant runtime savings (several hundred milliseconds per prefetchable HTTP request), both when applied on a reusable evaluation benchmark we have developed and on real applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available